Comparative study of photosensitizer loaded and conjugated glycol chitosan nanoparticles for cancer therapy.
نویسندگان
چکیده
This study reports that tumor-targeting glycol chitosan nanoparticles with physically loaded and chemically conjugated photosensitizers can be used in photodynamic therapy (PDT). First, the hydrophobic photosensitizer, chlorin e6 (Ce6), was physically loaded onto the hydrophobically-modified glycol chitosan nanoparticles (HGC), which were prepared by self-assembling amphiphilic glycol chitosan-5β-cholanic acid conjugates under aqueous conditions. Second, the Ce6s were chemically conjugated to the glycol chitosan polymers, resulting in amphiphilic glycol chitosan-Ce6 conjugates that formed self-assembled nanoparticles in aqueous condition. Both Ce6-loaded glycol chitosan nanoparticles (HGC-Ce6) and Ce6-conjugated chitosan nanoparticles (GC-Ce6) had similar average diameters of 300 to 350 nm, a similar in vitro singlet oxygen generation efficacy under buffer conditions, and a rapid cellular uptake profile in the cell culture system. However, compared to GC-Ce6, HGC-Ce6 showed a burst of drug release in vitro, whereby 65% of physically loaded drugs were rapidly released from the particles within 6.5h in the buffer condition. When injected through the tail vein into tumor bearing mice, HGC-Ce6 did not accumulate efficiently in tumor tissue, reflecting the burst in the release of the physically loaded drug, while GC-Ce6 showed a prolonged circulation profile and a more efficient tumor accumulation, which resulted in high therapeutic efficacy. These comparative studies with drug-loaded and drug-conjugated nanoparticles showed that the photosensitizer-conjugated glycol chitosan nanoparticles with excellent tumor targeting properties have potential for PDT in cancer treatment.
منابع مشابه
Tumor-homing photosensitizer-conjugated glycol chitosan nanoparticles for synchronous photodynamic imaging and therapy based on cellular on/off system.
Herein, we developed the photosensitizer, protoporphyrin IX (PpIX), conjugated glycol chitosan (GC) nanoparticles (PpIX-GC-NPs) as tumor-homing drug carriers with cellular on/off system for photodynamic imaging and therapy, simultaneously. In order to prepare PpIX-GC-NPs, hydrophobic PpIXs were chemically conjugated to GC polymer and the amphiphilic PpIX-GC conjugates formed a stable nanopartic...
متن کاملConjugated oligoelectrolyte-polyhedral oligomeric silsesquioxane loaded pH-responsive nanoparticles for targeted fluorescence imaging of cancer cell nucleus.
We report conjugated oligoelectrolyte-polyhedral oligomeric silsesquioxane (COE-POSS) loaded and pH-triggered chitosan/poly(ethylene glycol) nanoparticles with folic acid functionalization for targeted imaging of cancer cell nucleus.
متن کاملGene therapy based on interleukin-12 loaded chitosan nanoparticles in a mouse model of fibrosarcoma
Objective(s): Interleukin-12 (IL-12) as a cytokine has been proved to have a critical role in stimulating the immune system and has been used as immunotherapeutic agents in cancer gene therapy. Chitosan as a polymer, with high ability of binding to nucleic acids is a good candidate for gene delivery since it is biodegradable, biocompatible and non-allergenic polysaccharide. The objective of the...
متن کاملEnhanced Antitumor Activity of the Photosensitizer meso-Tetra(N-methyl-4-pyridyl) Porphine Tetra Tosylate through Encapsulation in Antibody-Targeted Chitosan/Alginate Nanoparticles
meso-Tetra(N-methyl-4-pyridyl) porphine tetra tosylate (TMP) is a photosensitizer that can be used in photodynamic therapy (PDT) to induce cell death through generation of reactive oxygen species in targeted tumor cells. However, TMP is highly hydrophilic, and therefore, its ability to accumulate intracellularly is limited. In this study, a strategy to improve TMP uptake into cells has been inv...
متن کاملOvercome the Doxorubicin Resistance by Moltimodal Nanoparticles in Mice
The efficacy of many chemotherapeutic agents is reduced in cells that have developed multiple drug resistance (MDR). To address this important problem, a biodegradable polymer was coupled to the photosensitizer and the resulting photosensitizer-nanoparticles were loaded with the chemotherapeutic agent doxorubicin. The combination of photosensitizer and chemotherapeutic agent had a synergistic a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of controlled release : official journal of the Controlled Release Society
دوره 152 1 شماره
صفحات -
تاریخ انتشار 2011